Home > リソース > MBDynチュートリアル > 18.クランク‐スライダ機構(2)〜Axial rotationジョイントとDrive Caller
MBDynチュートリアル

18.クランク‐スライダ機構(2)〜Axial rotationジョイントとDrive Caller

前項に引き続き、クランク‐スライダ機構のシミュレーションモデルを作成します。本項では特に、“axial rotation”ジョイントと“drive caller”によってクランクに動力を与える方法について説明します。最後に全体の入力ファイルとシミュレーション結果のアニメーションを示します。

Axial rotationジョイント

このジョイントはrevolute hinge(第14項参照)と同等な拘束に加え、任意の角速度を与えることができるジョイントです。axial rotationを定義する基本的なステートメントの型は次のようになります。

   joint: <label>, 
      axial rotation, 
         <node 1>,
            <relative offset 1>,
            hinge, <relative orientation matrix 1>,
         <node 2>,
            <relative offset 2>,
            hinge, <relative orientation matrix 2>,
         <angular velocity>;

ここで、 <relative offset 1>と<relative orientation matrix 1>、および <relative offset 2>と<relative orientation matrix 2>によって定義される2つの相対座標系の z 軸が回転軸になります。2つの相対座標系は一致させます。<angular velocity>は入力する角速度で、“drive caller”と呼ばれるオブジェクトによって指定します。drive callerについては以下で説明します。

Drive Caller

強制変位や力などを定義する要素に対して時間依存の入力を与える必要がある場合には、drive callerと呼ばれるオブジェクトを使用します。drive callerは基本的には時間依存のスカラー関数です。種類によって時間依存性が陽の場合もあれば、陰の場合もあります(陰の場合には、状態変数に依存する入力をdrive callerで与えるので、実質的にフィードバックを形成します)。drive callerの例としては、正弦波入力を与える“sine drive”、一定値入力を与える“constant drive”などがあります。最も汎用的な“string drive”では任意の陽または陰の時間関数を入力することができます(第22項参照)。また、ファイルに記述されたデータを入力する“file drive”なども用意されています。drive callerは多くの種類がありますので、詳しくは公式のInput manualを参照してください。

Ramp Drive

本例題では、axial rotationジョイントの角速度入力として、“ramp drive”を使用します。ramp driveの型は次のようになります。(図1参照)

   ramp,
      <slope>,
      <initial time>,
      { forever | <final time> },
      <initial value>

ramp_drive

図1: Ramp Drive

クランクの角速度入力

本例題のクランク‐スライダ機構のシミュレーションモデルにおいて、クランクはaxial rotationジョイントで「Node_Ground」に取り付け、axial rotationの角速度入力はramp driveで与えます。角速度は、時刻1(s)までの間に静止状態から2π(rad/s)まで上昇させ、その後一定に保ちます。

set: integer JoAxrot_Ground_Crank  = 2;

joint: JoAxrot_Ground_Crank, 
   axial rotation, 
      Node_Ground,
         null,                     # relative offset
         hinge, eye,               # relative orientation
      Node_Crank,
         -Length_Crank/2., 0., 0., # relative offset
         hinge, eye,               # relative orientation
      ramp, 2.*pi, 0., 1., 0.;     # angular velocity 

入力ファイル記述例

以上を踏まえて作成した、例題5のクランク‐スライダ機構の解析を行うための入力ファイルをコード1に示します。コードの行数が多いので、区切り線によって見やすくしています。

crank_slider.mbd
# crank_slider.mbd

#-----------------------------------------------------------------------------
# [Data Block]

begin: data;
   problem: initial value;
end: data;

#-----------------------------------------------------------------------------
# [<Problem> Block]

begin: initial value;
   initial time:   0.;
   final time:     5.;
   time step:      1.e-2;
   max iterations: 10;
   tolerance:      1.e-6;
end: initial value;

#-----------------------------------------------------------------------------
# [Control Data Block]

begin: control data;
   structural nodes: 4;
   rigid bodies:     3;
   joints:           6;
end: control data;

#-----------------------------------------------------------------------------
# Design Variables
set: real Mass_Crank    = 1.;
set: real Mass_Conrod   = 1.;
set: real Mass_Slider   = 1.;
set: real Length_Crank  = 0.2;
set: real Length_Conrod = 0.4;
set: real Offset_Slider = 0.05;

#-----------------------------------------------------------------------------
# Reference Labels
set: integer Ref_Conrod = 1;

# Node Labels
set: integer Node_Ground = 1;
set: integer Node_Crank  = 2;
set: integer Node_Conrod = 3;
set: integer Node_Slider = 4;

# Body Labels
set: integer Body_Crank  = 1;
set: integer Body_Conrod = 2;
set: integer Body_Slider = 3;

# Joint Labels
set: integer JoClamp_Ground        = 1;
set: integer JoAxrot_Ground_Crank  = 2;
set: integer JoRevh_Crank_Conrod   = 3;
set: integer JoInlin_Conrod_Slider = 4;
set: integer JoInlin_Ground_Slider = 5;
set: integer JoPrism_Ground_Slider = 6;

#-----------------------------------------------------------------------------
# Intermediate Variables
set: real Izz_Crank  = Mass_Crank*Length_Crank^2./12.;
set: real Izz_Conrod = Mass_Conrod*Length_Conrod^2./12.;

#-----------------------------------------------------------------------------
# References
reference: Ref_Conrod,
   Length_Crank, 0., 0.,                             # absolute position
   euler, 0., 0., asin(Offset_Slider/Length_Conrod), # absolute orientation
   null,                                             # absolute velocity
   null;                                             # absolute angular velocity

#-----------------------------------------------------------------------------
# [Nodes Block]

begin: nodes;

   #-----------------------------------------------------------------------------
   # Nodes
   structural: Node_Ground, static,
      0., 0., 0., # absolute position
      eye,        # absolute orientation
      null,       # absolute velocity
      null;       # absolute angular velocity

   structural: Node_Crank, dynamic,
      Length_Crank/2., 0., 0., # absolute position
      eye,                     # absolute orientation
      null,                    # absolute velocity
      null;                    # absolute angular velocity
      
   structural: Node_Conrod, dynamic,
      reference, Ref_Conrod, Length_Conrod/2., 0., 0., # absolute position
      reference, Ref_Conrod, eye,                      # absolute orientation
      null,                                            # absolute velocity
      null;                                            # absolute angular velocity
      
   structural: Node_Slider, dynamic,
      reference, Ref_Conrod, Length_Conrod, 0., 0., # absolute position
      eye,                                          # absolute orientation
      null,                                         # absolute velocity
      null;                                         # absolute angular velocity
      
end: nodes;

#-----------------------------------------------------------------------------
# [Elements Block]

begin: elements;

   #-----------------------------------------------------------------------------
   # Bodies
   body: Body_Crank, Node_Crank,
      Mass_Crank,              # mass
      null,                    # relative center of mass
      diag, 1., 1., Izz_Crank; # inertia matrix
      
   body: Body_Conrod, Node_Conrod,
      Mass_Conrod,              # mass
      null,                     # relative center of mass
      diag, 1., 1., Izz_Conrod; # inertia matrix
      
   body: Body_Slider, Node_Slider,
      Mass_Slider, # mass
      null,        # relative center of mass
      eye;         # inertia matrix
   
   #-----------------------------------------------------------------------------
   # Joints
   joint: JoClamp_Ground,
      clamp,
         Node_Ground,
            null, # absolute position
            eye;  # absolute orientation
   
   joint: JoAxrot_Ground_Crank, 
      axial rotation, 
         Node_Ground,
            null,                     # relative offset
            hinge, eye,               # relative orientation
         Node_Crank,
            -Length_Crank/2., 0., 0., # relative offset
            hinge, eye,               # relative orientation
         ramp, 2.*pi, 0., 1., 0.;     # angular velocity   
            
   joint: JoRevh_Crank_Conrod, 
      revolute hinge, 
         Node_Crank,
            reference, Ref_Conrod, null,       # relative offset
            hinge, reference, Ref_Conrod, eye, # relative axis orientation
         Node_Conrod,
            reference, Ref_Conrod, null,       # relative offset
            hinge, reference, Ref_Conrod, eye; # relative axis orientation
            
   joint: JoInlin_Conrod_Slider, 
      in line, 
         Node_Conrod,
            Length_Conrod/2., 0., 0., # relative line position
            eye,                      # relative orientation
         Node_Slider;
      
   joint: JoInlin_Ground_Slider, 
      in line,
         Node_Ground,
            0., Offset_Slider, 0.,         # relative line position
            1, 0., 0., -1., 3, 1., 0., 0., # relative orientation
         Node_Slider;
      
   joint: JoPrism_Ground_Slider,
      prismatic,
         Node_Ground,
         Node_Slider;
                  
end: elements;
コード1: 例題5(クランク‐スライダ機構)の入力ファイル記述例

アニメーション

シミュレーション結果のアニメーションを動画1に示します。




動画1: クランク‐スライダ機構シミュレーション